Preconditioned eigensolvers for large-scale nonlinear Hermitian eigenproblems with variational characterizations. I. Extreme eigenvalues
نویسندگان
چکیده
Efficient computation of extreme eigenvalues of large-scale linear Hermitian eigenproblems can be achieved by preconditioned conjugate gradient (PCG) methods. In this paper, we study PCG methods for computing extreme eigenvalues of nonlinear Hermitian eigenproblems of the form T (λ)v = 0 that admit a nonlinear variational principle. We investigate some theoretical properties of a basic CG method, including its global and asymptotic convergence. We propose several variants of single-vector and block PCG methods with deflation for computing multiple eigenvalues, and compare them in arithmetic and memory cost. Variable indefinite preconditioning is shown to be effective to accelerate convergence when some desired eigenvalues are not close to the lowest or highest eigenvalue. The efficiency of variants of PCG is illustrated by numerical experiments. Overall, the locally optimal block preconditioned conjugate gradient (LOBPCG) is the most efficient method, as in the linear setting.
منابع مشابه
Preconditioned Eigensolvers for Large-scale Nonlinear Hermitian Eigenproblems with Variational Characterizations. I. Conjugate Gradient Methods
Preconditioned conjugate gradient (PCG) methods have been widely used for computing a few extreme eigenvalues of large-scale linear Hermitian eigenproblems. In this paper, we study PCG methods to compute extreme eigenvalues of nonlinear Hermitian eigenproblems of the form T (λ)v = 0 that admit a nonlinear variational principle. We investigate some theoretical properties of a basic CG method, in...
متن کاملPreconditioned Eigensolvers for Large-Scale Nonlinear Hermitian Eigenproblems with Variational Characterizations. II. Interior Eigenvalues
We consider the solution of large-scale nonlinear algebraic Hermitian eigenproblems of the form T (λ)v = 0 that admit a variational characterization of eigenvalues. These problems arise in a variety of applications and are generalizations of linear Hermitian eigenproblems Av=λBv. In this paper, we propose a Preconditioned Locally Minimal Residual (PLMR) method for efficiently computing interior...
متن کاملVariational Characterization of Eigenvalues of Nonlinear Eigenproblems
In this paper we survey variational characterizations of eigenvalues of nonlinear eigenproblems, i.e. generalizations of Rayleigh’s principle, the minmax characterization of Poincaré, and the maxmin characterization of Courant, Fischer and Weyl to eigenvalue problems containing the eigenparameter nonlinearly. In this note we consider the nonlinear eigenvalue problem
متن کاملConvergence Estimates for Preconditioned Gradient Subspace Iteration Eigensolvers
Subspace iteration for computing several eigenpairs (i.e. eigenvalues and eigenvectors) of an eigenvalue problem is an alternative to the deflation technique whereby the eigenpairs are computed successively by projecting the problem onto the subspace orthogonal to the already found eigenvectors. The main advantage of the subspace iteration over the deflation is its ‘cluster robustness’: even if...
متن کاملVariational Principles for Eigenvalues of Nonlinear Eigenproblems
Variational principles are very powerful tools when studying self-adjoint linear operators on a Hilbert spaceH. Bounds for eigenvalues, comparison theorems, interlacing results and monotonicity of eigenvalues can be proved easily with these characterizations, to name just a few. In this paper we consider generalization of these principles to families of linear, self-adjoint operators depending ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Comput.
دوره 85 شماره
صفحات -
تاریخ انتشار 2016